Thalidomide metabolism by the CYP2C subfamily.
نویسندگان
چکیده
PURPOSE This research investigated the biotransformation of thalidomide by cytochrome P-450 (CYP). EXPERIMENTAL DESIGN We used liver microsomes from humans and/or animals and the recombinant specific CYP isozymes to investigate CYP-mediated metabolism of thalidomide. RESULTS Thalidomide was biotransformed into 5-hydroxythalidomide (5-OH) and diastereomeric 5'-hydroxythalidomide (5'-OH) by liver microsomes. The human liver microsomes with higher CYP2C19 activity formed more metabolites than those with lower CYP2C19 activity and had less activity in metabolite formations than those from rats. Recombinant human CYP2C19 and rat CYP2C6 isozymes were primarily responsible for forming these metabolites, and the male rat-specific CYP2C11 formed only 5'-OH. 5-OH was subsequently hydroxylated to 5,6-dihydroxythalidomide by CYP2C19, CYP2C9, and CYP1A1 in humans and by CYP2C11, CYP1A1, CYP2C6, and CYP2C12 in rats. Incubations with S-mephenytoin and omeprazole, substrates of CYP2C19, inhibited metabolism by human liver microsomes, supporting the involvement of CYP2C19. alpha-Naphthoflavone, an inhibitor of CYP1A, simultaneously stimulated the 5-OH formation and inhibited cis-5'-OH formation catalyzed by human liver microsomes. The contribution of the CYP2C subfamily was supported by the immunoinhibition study using human liver microsomes. When we used the microsomes from treated rats, the metabolite formations did not increase by inducers for CYP1A, CYP2B, CYP2E, CYP3A, or CYP4A, suggesting that these could not be involved in the main metabolic pathway in rats. CONCLUSIONS We discovered that the polymorphic enzyme CYP2C19 is responsible for 5- and 5'-hydroxylation of thalidomide in humans. In rats, thalidomide was hydroxylated extensively by CYP2C6 as well as the sex-specific enzyme CYP2C11.
منابع مشابه
Characterization of the Tissue Distribution of the Mouse Cyp2c Subfamily by Quantitative PCR Analysis.
The CYP2C subfamily of the cytochrome P450 gene superfamily encodes heme-thiolate proteins that have a myriad of biologic functions. CYP2C proteins detoxify xenobiotics and metabolize endogenous lipids such as arachidonic acid to bioactive eicosanoids. We report new methods and results for the quantitative polymerase reaction (qPCR) analysis for the 15 members of the mouse Cyp2c subfamily (Cyp2...
متن کاملAnalyses of CYP2C in porcine microsomes.
The cytochrome P450 2C (CYP2C) subfamily in human beings includes four different isoenzymes that metabolize different substrates although with some cross reactivity. Some of these substrates (e.g. diclofenac and tolbutamide), have been investigated in porcine microsomes, but without identifying the specific CYP catalysing the reactions. The objective of this study was therefore to test some CYP...
متن کاملDmd061242 353..357
Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brai...
متن کاملDmd061242 353..357
Cytochrome P450 enzymes from the CYP2C subfamily play a prominent role in the metabolic clearance of many drugs. CYP2C enzymes have also been implicated in the metabolism of arachidonic acid to vasoactive epoxyeicosatrienoic acids. CYP2C8, CYP2C9, and CYP2C19 are expressed in the adult liver at significant levels; however, the expression of CYP2C enzymes in extrahepatic tissues such as the brai...
متن کاملIsolation of a new canine cytochrome P450 CDNA from the cytochrome P450 2C subfamily (CYP2C41) and evidence for polymorphic differences in its expression.
Two members of the canine cytochrome P4502C subfamily [CYP2C21 and CYP2C41 (sequence has been submitted to Genbank with accession number AF016248)] were cloned from three beagle liver cDNA libraries. The two canine CYP2C cDNAs exhibited 70% nucleotide and amino acid identity as well as 74-83% nucleotide and 67-76% amino acid identity with the human CYP2Cs. Canine CYP2C41 is more homologous to t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 8 6 شماره
صفحات -
تاریخ انتشار 2002